

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF SCIENCE; BACHELOR OF SCIENCE IN APPLIED MATHEMATICS	
AND STATISTICS	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY/ SUPPLEMENTARY EXAMINATION QUESTION PAPER	
EXAMINER:	MR G. TAPEDZESA
MODERATOR:	MR B. OBABUEKI

INSTRUCTIONS

- 1. Examination conditions apply at all times. NO books, notes, or phones are allowed.
- 2. Answer ALL the questions and number your answers clearly and correctly.
- 3. Marks will not be awarded for answers obtained without showing the necessary steps leading to them (the answers).
- 4. Write clearly and neatly.
- 5. All written work must be done in dark blue or black ink.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1. [34 MARKS]

1.1 Determine whether each of the following mappings T is linear, or not. Justify your answer.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, where $T(x, y) = (3y, 2x, -y)$. [5]

(b)
$$T: P_1 \to \mathbb{R}^2$$
, where $T[p(x)] = [p(0), p(1)]$. [5]

(c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, where $T(x, y, z) = (x + 1, y + z)$. [5]

1.2 Define the following terms as they are used in linear algebra:

- (a) The kernel of a linear mapping. [2]
- (b) A singular mapping. [2]
- (c) A one-to-one mapping. [2]

1.3 Let V be the subspace of $C[0, 2\pi]$ spanned by the vectors $1, \sin x, \cos x$, and let $T: V \to \mathbb{R}^3$ be the evaluation transformation on V at the sequence points $0, \pi, 2\pi$. Find

(a)
$$T(1 + \sin x + \cos x)$$
. [2]

(b)
$$ker(T)$$
. [5]

1.4 Let F and G be the linear operators on \mathbb{R}^2 defined by

$$F(x,y) = (x+y,0)$$
 and $G(x,y) = (-y,x)$.

Find formulas defining the following linear operators:

(a)
$$3F - 2G$$
.

(b)
$$F \circ G$$
.

(c)
$$G^2$$
.

QUESTION 2. [28 MARKS]

2.1 Let $T: P_2 \to P_2$ be a linear operator defined by

$$T(a_0 + a_1x + a_2x^2) = a_0 + a_1(3x - 5) + a_2(3x - 5)^2,$$

and the basis $S = \{1, x, x^2\}$ for P_2 .

(a) Find the matrix representation of T relative to S, and denote it by $[T]_S$. [7]

- (b) By observing that S is the standard basis for P_2 , or otherwise, find the coordinate vector for $\mathbf{p} = 1 + 2x + 3x^2$ relative to the basis S, and denote it by $[p]_S$. [2]
- (c) Use the transition matrix you obtained in part (a) above and the result in (b) to compute $[T(p)]_S$. [4]
- (d) Hence, determine $T(p) = T(1 + 2x + 3x^2)$, again by noting that S is the standard basis for P_2 . [2]
- 2.2 Consider the bases

$$S_1 = \{p_1, p_2\} = \{6 + 3x, 10 + 2x\}$$
 and $S_2 = \{q_1, q_2\} = \{2, 3 + 2x\}$

for P_1 , the vector space of polynomials of degree ≤ 1 .

- (a) Find the transition matrix from S_1 to S_2 and denote it by $P_{S_1 \to S_2}$. [7]
- (b) Compute the coordinate vector $[p]_{S_1}$, where p = -4 + x, and use the transition matrix you obtained in part (a) above to compute $[p]_{S_2}$. [6]

QUESTION 3. [20 MARKS]

3.1 Prove that the characteristic polynomial of a 2×2 matrix A can be expressed as

$$\lambda^2 - tr(A)\lambda + det(A).$$

[4]

- 3.2 Suppose $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ and $P = \begin{bmatrix} -2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Confirm that P diagonalises A, by finding P^{-1} and computing $P^{-1}AP = D$. [9]
 - (b) Hence, find A^{13} . [7]

QUESTION 4. [18 MARKS]

- 4.1 Let $\mathbf{x}^T A \mathbf{x}$ be a quadratic form in the variables x_1, x_2, \dots, x_n , and define $T : \mathbb{R}^n \to \mathbb{R}$ by $T(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Show that $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + 2\mathbf{x}^T A \mathbf{y} + T(\mathbf{y})$ and $T(c\mathbf{x}) = c^2 T(\mathbf{x})$, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. [8]
- $4.2\,$ Find an orthogonal change of variables that eliminates the cross product terms in the quadratic form

$$Q(\mathbf{x}) = x_1^2 - x_3^2 - 4x_1x_2 + 4x_2x_3$$

and express Q in terms of the new variables.

he new variables. [10]

END OF QUESTION PAPER